Ensemble Methods for Personality Recognition

نویسندگان

  • Ben Verhoeven
  • Tom De Smedt
چکیده

An important bottleneck in the development of accurate and robust personality recognition systems based on supervised machine learning, is the limited availability of training data, and the high cost involved in collecting it. In this paper, we report on a proof of concept of using ensemble learning as a way to alleviate the data acquisition problem. The approach allows the use of information from datasets from different genres, personality classification systems and even different languages in the construction of a classifier, thereby improving its performance. In the exploratory research described here, we indeed observe the expected positive effects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classifier Ensemble Framework: a Diversity Based Approach

Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...

متن کامل

Comparative study of speaker personality traits recognition in conversational and broadcast news speech

Natural human-computer interaction requires, in addition to understand what the speaker is saying, recognition of behavioral descriptors, such as speaker’s personality traits (SPTs). The complexity of this problem depends on the high variability and dimensionality of the acoustic, lexical and situational context manifestations of the SPTs. In this paper, we present a comparative study of automa...

متن کامل

Combining Classifier Guided by Semi-Supervision

The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...

متن کامل

Ensemble Methods for Phoneme Classification

This paper investigates a number of ensemble methods for improving the performance of phoneme classification for use in a speech recognition system. Two ensemble methods are described; boosting and mixtures of experts, both in isolation and in combination. Results are presented on two speech recognition databases: an isolated word database and a large vocabulary continuous speech database. Thes...

متن کامل

Combining Classifier Guided by Semi-Supervision

The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013